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Abstract Ensemble-based approaches to RNA secondary structure prediction have
become increasingly appreciated in recent years. Here, we utilize sampling and clus-
tering of the Boltzmann ensemble of RNA secondary structures to investigate whether
biological sequences exhibit ensemble features that are distinct from their random
shuffles. Representative messenger RNAs (mRNAs), structural RNAs, and precursor
microRNAs (miRNAs) are analyzed for nine ensemble features. These include struc-
ture clustering features, the energy gap between the minimum free energy (MFE)
and the ensemble, the numbers of high-frequency base pairs in the ensemble and in
clusters, the average base-pair distance between the MFE structure and the ensemble,
and between-cluster and within-cluster sums of squares. For each of the features, we
observe a lack of significant distinction between mRNAs and their random shuffles. For
five features, significant differences are found between structural RNAs and random
counterparts. For seven features including the five for structural RNAs, much greater
differences are observed between precursor miRNAs and random shuffles. These fin-
dings reveal differences in the Boltzmann structure ensemble among different types of
functional RNAs. In addition, for two ensemble features, we observe distinctive, non-
overlapping distributions for precursor miRNAs and random shuffles. A distributional
separation can be particularly useful for the prediction of miRNA genes.

1 Introduction

The secondary structures of RNA molecules are important for their functions in gene
regulation. For structural RNAs, e.g., transfer RNAs (tRNAs) and ribosomal RNAs
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(rRNAs), secondary structures have been well elucidated by comparative sequence
analysis [7,25]. The importance of microRNAs (miRNAs) [2,3] in gene-regulation
has become increasingly appreciated. The stem-loop structure for the precursor of
a miRNA is involved in cellular processing of the precursor miRNA into mature
miRNA [16,28]. A messenger RNA (mRNA), on the other hand, is unlikely to adopt
a single and stable conformation, but rather exists in a population of structures [4,9].
Several studies have been conducted to assess the thermodynamic stability of secon-
dary structures by evaluating the minimum free energy (MFE) values of biological
sequences against those of randomized sequences. Seffens and Digby reported that
mRNAs on average have significantly lower folding free energies than random RNAs
of the same mononucleotide frequencies [24]. Workman and Krogh challenged this
finding based on the argument that preserving the dinucleotide distribution is critical
in the random shuffling process due to the dominant dinucleotide base-pair stacking
energies for RNA secondary structure [26]. Their study found no evidence of lower
folding free energies in mRNAs than randomly shuffled sequences with preserved
dinucleotide frequencies. Bonnet and colleagues studied a set of non-coding RNAs
and observed lower folding free energies in biological sequences than in random
sequences for the majority of precursor miRNAs but not for their sets of tRNAs and
rRNAs [5]. Clote and colleagues performed another analysis on a set of structural
RNAs and also a set of mRNAs [10]. They concluded that structural RNAs have lower
folding energies than random shuffles of the same dinucleotide frequencies, while the
mRNAs possess folding energies that are comparable to those of their randomized
counterparts.

Although several attempts have been made to examine the differences between
biological and random sequences, the examination of the stability of secondary struc-
ture as indicated by the MFE has been the most common means for comparison.
In recent years, ensemble-based approaches to RNA secondary structure prediction
have become increasingly appreciated [11]. Based on a dynamic programming
algorithm for calculating moments of the Boltzmann free energy distribution, Miklos
and colleagues considered three ensemble characteristics: the Boltzmann probabi-
lity of the MFE structure, the free energy distance between the MFE structure and
the expected free energy value of the remaining free energy distribution, and the
variance of the free energies of the Boltzmann distribution [20]. For a set of pre-
cursor miRNAs, a set of tRNAs and a set of 5S rRNA, they observed significant
differences between biological sequences and random shuffles for all three charac-
teristics. Here, we consider nine complementary ensemble features based on sam-
pling and clustering of Boltzmann ensemble of RNA secondary structures that have
been shown to have advantages over the MFE approach [13–15], and use these fea-
tures to further examine the differences between biological sequences and random
sequences. A majority of these features were included in our previous comparison
between mRNAs and structural RNAs [14]. The results of our analyses support pre-
vious findings. Of particular interest, for two ensemble features, we observed dis-
tinctive, non-overlapping distributions for precursor miRNAs and random shuffles.
A distributional separation can be particularly useful for the prediction of miRNA
genes.
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2 Materials and methods

2.1 RNA sequences

We included three separate sets of biological RNA sequences in this study, with a
total of 118 sequences of lengths ranging from 64 to 983 nt. We started the sequence
selection process by extracting those from our previous study on clustering of mRNA
secondary structures [14], from our previous analysis on the performance of centroid
structures [13], and from a comparative study by Bonnet and colleagues on differences
in folding free energies between biological and random sequences [5]. The use of these
sequences facilitates comparison of results among studies. There are a total of 227
sequences in the three extracted datasets, including 100 full-length human mRNAs
randomly selected from the NCBI Reference Sequence (RefSeq) database [23], 81
structural RNAs of diverse types that were drawn by stratified random sampling
from various online databases, and 46 experimentally validated precursor miRNAs for
C. elegans, D. melanogaster and H. sapiens. (For a complete listing of all mRNAs,
structural RNAs and precursor miRNAs, please see [5,13,14], respectively). Due to
the need to generate a sufficiently large number of random shuffles for each biolo-
gical sequence and time-consuming calculation of partition functions for structure
sampling, we set a limit of 1,000 nt for sequence length to make the computations
manageable under time and resource constraints. For structural RNAs, we included
ten tRNAs, ten 5S rRNAs, ten RNase P RNAs, ten SRP RNAs, ten tmRNAs, eight
group I introns, one group II intron, and one 23S rRNA. The length limit removed all
of ten 16S rRNAs, nine of ten 23S rRNAs, one group I intron, and one group II intron
from the original set of 81 structural RNAs. The final set of 118 RNA sequences for
this study includes 12 mRNAs, 60 structural RNAs, and 46 precursor miRNAs.

2.2 Dinucleotide shuffling and test of significance

Because RNA secondary structure depends largely on base-pair stacking interactions,
shuffling by preserving dinucleotide frequencies has been considered more appro-
priate than mononucleotide shuffling [26]. A dinucleotide shuffling algorithm was
reported by Altschul and Erickson [1]. A program implementing this algorithm has
been developed by the Clote lab [10] and is used here. Specifically, we generated 100
random shuffles for each of the 118 biological sequences. Ensemble statistics were
computed for every random sequence and then an average value was calculated for
each ensemble statistic for the 100 random shuffles. At the end, for each biological
sequence, we have a list of its ensemble statistics for nine ensemble features described
below, and also a corresponding list of averaged statistics for the random shuffles. We
repeated this computation for all of the 118 RNA sequences.

Next, for each ensemble statistic, we would like to assess whether there exists
a significant difference between the biological sequences of the same type and the
random shuffles. Here, the type of RNAs is mRNA, or structural RNA, or precursor
miRNA. Since there is a one-to-one correspondence between a biological sequence
and its random shuffles, we performed paired Student’s t tests for making two-group
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comparisons. Mean values of the two groups and the corresponding P value are
reported for each ensemble statistic in the Results section. We did not combine the
three types of RNAs for comparison, because they are functionally different and might
have different features. Thus, we report findings for each type, and then compare and
contrast the results among different RNA types.

2.3 Sampling and clustering of RNA secondary structures

Partition functions and samples from the Boltzmann-weighted ensemble of RNA
secondary structures were computed with our Sfold software [12]. The forward step of
the Sfold algorithm computes equilibrium partition functions for all substrings of an
RNA sequence based on the Turner thermodynamic parameters [19,27]. The traceback
step then applies a recursive sampling algorithm that draws a new base pair or unpaired
base(s) given a partially formed structure, based on the conditional probabilities com-
puted with the partition functions. In this study, a statistically representative sample
of 1,000 structures was generated for each biological or random sequence. It has been
shown that a sample size of 1,000 is sufficient to guarantee statistical reproducibi-
lity in typical sampling statistics, even for long sequences with enormous numbers of
possible structures [14,15]. Statistics of the Boltzmann ensemble were then estimated
using this sample of structures. Details of the partition function calculation and the
sampling algorithm were reported in [15].

RNA clustering procedures were performed on each structure sample, and clustering
statistics were computed. Our clustering approach has been described comprehensi-
vely in [8,13,14]. In short, the Sfold clustering module employs the top-down divisive
hierarchical clustering method, Diana [18], in partitioning the sampled ensemble into
structural clusters. Base-pair distance, as defined in [13,14], is used as the basis for
evaluating dissimilarity between structures. The optimal number of clusters is determi-
ned by the CH index [6], which examines the ratio of between-cluster sums of squares
to within-cluster sums of squares. Once the number of clusters is determined, we next
determine to which cluster the MFE structure belongs, based on the radii of clusters and
distances between the MFE structure and the clusters. The MFE structure is predicted
by version 3.1 of the mfold software [30,31] for the same set of Turner thermodyna-
mic parameters [19,27] that have been implemented in Sfold. Furthermore, we have
introduced the notion of a centroid for any given set of structures. The centroid is
the structure in the entire structure ensemble space that has the shortest total base-pair
distance to the set of structures [13]. Ensemble centroid, the structure with the shortest
total base-pair distance to the structures in the sampled ensemble, and cluster centroid,
the structure with the shortest total base-pair distance to all structures in a cluster, can
be easily computed as representatives of the ensemble and the cluster [13].

2.4 Ensemble features

A total of nine ensemble and clustering features are considered in our analyses. Sta-
tistics for these features are calculated with sampled ensemble of 1,000 structures.
These features and calculations are described in detail below:
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Ensemble features of RNA secondary structures 97

• Number of clusters. This is simply the optimal number of structural clusters
determined by the CH index [6] for the set of 1,000 sampled structures. The use
of CH index in our clustering procedures was discussed in [14].

• Size of the largest cluster. The size of a cluster is computed by the number of
structures classified into that cluster divided by 1,000, the total number of sampled
structures. It is a sample estimate of the probability of the cluster in the Boltzmann
ensemble. The size of the largest cluster is computed here.

• Size of the cluster containing the MFE structure. The cluster to which the MFE
structure belongs is determined by the method as described in [14]. The size of
that cluster is reported here.

• Energy gap between the MFE and the ensemble. The average free energy of the
sampled ensemble of 1,000 structures is first calculated. The difference between
this average free energy and the MFE of this sequence is then computed. This
energy gap is normalized by the length of sequence, which has been used before as
the normalization factor for free energies of RNA secondary structures [22]. This
sample-based statistic is essentially different from the “deviation” measure based
on an exact algorithm [20]. The deviation was calculated from the free energy
distribution with the MFE excluded while the MFE is not specifically removed
in our average energy calculation. Thus, results from the two measures cannot be
directly compared, particularly for short sequences for which a sample contains a
substantial number of structures with MFE.

• Number of high-frequency base pairs in the ensemble. Base pairs with a sample
frequency >0.5 are defined as high-frequency base pairs. We simply count the num-
ber of base pairs that appear in more than 500 structures in the sampled ensemble
of 1,000 structures. Since the number of base pairs in a structure grows roughly
linearly with sequence length, sequence length is used here as the normalization
factor to allow comparisons among sequences of different lengths.

• Average number of high-frequency base pairs per cluster. This number is based on
the application of the same base-pair frequency threshold of >0.5 to the clusters.
For every cluster in the structure sample for a sequence, we first find the number
of base pairs that appear in more than half of the structures in that cluster. We
sum up the numbers for all clusters, divide the total by the number of clusters
and then divide it again by the normalization factor of sequence length to obtain
the normalized average number of high-frequency base pairs per cluster for the
sequence.

• Average base-pair distance between the MFE structure and the ensemble. Base-
pair distance between two structures is defined as the sum of the number of base
pairs present only in one structure and the number of base pairs present only in the
other structure. The mathematical definition of base-pair distance was described
in [14]. We compute the base-pair distance between the MFE structure and each of
the structures in the sampled ensemble, then sum up the base-pair distances over
the structure sample and divide the sum by 1,000, and then finally normalize the
value by sequence length.

• Between-cluster sum of squares (BSS). BSS is a measure of closeness among clus-
ters of structures for a sequence [14]. It is defined as BSS = ∑

1≤i≤k ni D(EC, CCi ),
where k is the optimal number of clusters, ni is the number of structures in the i th
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cluster, D(·, ·) is the base-pair distance between two structures, EC is the ensemble
centroid and CCi is the centroid of the i th cluster. Here, ensemble centroid is defi-
ned as the structure in the entire structure ensemble space that has the shortest total
base-pair distance to the 1,000 sampled structures [13]. Likewise, cluster centroid
is defined as the structure in the entire structure ensemble that has the shortest
total base-pair distance to all structures in that cluster [13]. It was shown that the
structure formed by the high-frequency base pairs in the sampled ensemble is the
ensemble centroid [13], and the structure formed by the high-frequency base pairs
in a cluster is the cluster centroid [13]. The BSS value is normalized by the length
of sequence for comparison purpose. Regression results from our previous ana-
lysis showed that normalization by sequence length for these sums of squares is
appropriate [14].

• Within-cluster sum of squares (WSS). WSS is a measure of compactness
of clusters of structures for a sequence [14]. It is defined as WSS =∑

1≤i≤k
∑

1≤ j≤ni
D(CCi , Ii j ), where k is the optimal number of clusters, ni is

the number of structures in the i th cluster, D(·, ·) is the base-pair distance between
two structures, CCi is the centroid of the i th cluster and Ii j is the j th structure of
the i th cluster. The WSS value is also normalized by the length of sequence for
comparison purpose.

3 Results

For the nine ensemble features, the results of the comparison with random shuffles
differ for the three types of RNAs. For mRNAs, we did not observe significant dif-
ference between biological sequences and random sequences for any of the features
(Table 1). This shows that, on average, mRNAs and their shuffled sequences are not

Table 1 Comparison of ensemble and clustering features between biological and random sequences for
the 12 mRNAs

Ensemble and clustering features Mean and standard deviation P value from
paired t test

Biological sequences Random shuffles

Number of clusters 2.92 ± 1.31 3.04 ± 0.17 0.7435

Size of the largest cluster 0.7606 ± 0.1697 0.7265 ± 0.0127 0.4927

Size of the cluster containing the MFE
structure

0.5142 ± 0.3239 0.5588 ± 0.0395 0.6498

Energy gap between the MFE and the
ensemblea

0.0291 ± 0.0049 0.0276 ± 0.0029 0.1095

Number of high-frequency base pairs in
the ensemblea

0.2102 ± 0.0416 0.2137 ± 0.0116 0.7716

Average number of high-frequency base
pairs per clustera

0.2204 ± 0.0231 0.2262 ± 0.0116 0.3550

Average base-pair distance between the
MFE structure and the ensemblea

0.2521 ± 0.0832 0.2448 ± 0.0141 0.7640

Between-cluster sum of squaresa 50.62 ± 34.50 56.59 ± 4.62 0.5512

Within-cluster sum of squaresa 137.54 ± 26.45 134.79 ± 8.29 0.6747

a Sequence length has been applied as the normalization factor
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Table 2 Comparison of ensemble and clustering features between biological and random sequences for
the 60 structural RNAs

Ensemble and clustering features Mean and standard deviation P value from
paired t test

Biological sequences Random shuffles

Number of clusters 3.25 ± 1.92 3.35 ± 0.36 0.6704

Size of the largest cluster 0.7265 ± 0.1598 0.7134 ± 0.0170 0.5193

Size of the cluster containing the MFE
structure

0.6449 ± 0.2425 0.5982 ± 0.0386 0.1356

Energy gap between the MFE and the
ensemblea

0.0260 ± 0.0083 0.0277 ± 0.0046 0.0620

Number of high-frequency base pairs in
the ensemblea

0.2583 ± 0.0595 0.2243 ± 0.0202 3.559E-06

Average number of high-frequency base
pairs per clustera

0.2694 ± 0.0446 0.2401 ± 0.0200 1.243E-07

Average base-pair distance between the
MFE structure and the ensemblea

0.1634 ± 0.0982 0.2192 ± 0.0327 3.301E-05

Between-cluster sum of squaresa 56.58 ± 45.07 74.12 ± 10.91 0.0028

Within-cluster sum of squaresa 92.01 ± 50.00 113.91 ± 22.16 0.0001

a Sequence length has been applied as the normalization factor

Table 3 Comparison of ensemble and clustering features between biological and random sequences for
the 46 precursor miRNAs

Ensemble and clustering features Mean and standard deviation P value from
paired t test

Biological sequences Random shuffles

Number of clusters 5.61 ± 5.11 3.54 ± 0.32 0.0096

Size of the largest cluster 0.6708 ± 0.2046 0.7065 ± 0.0172 0.2447

Size of the cluster containing the MFE
structure

0.6443 ± 0.2371 0.6460 ± 0.0261 0.9595

Energy gap between the MFE and the
ensemblea

0.0161 ± 0.0084 0.0317 ± 0.0030 2.052E-17

Number of high-frequency base pairs in
the ensemblea

0.3484 ± 0.0369 0.2163 ± 0.0181 5.429E-28

Average number of high-frequency base
pairs per clustera

0.3445 ± 0.0334 0.2335 ± 0.0162 3.236E-27

Average base-pair distance between the
MFE structure and the ensemble a

0.0547 ± 0.0276 0.1850 ± 0.0150 8.969E-32

Between-cluster sum of squaresa 29.27 ± 17.50 86.55 ± 6.96 2.133E-25

Within-cluster sum of squaresa 32.10 ± 18.69 93.43 ± 9.05 8.488E-26

a Sequence length has been applied as the normalization factor

distinguishable. Structural RNAs, on the other hand, display significant differences
from their randomized sequences for five of the nine features (Table 2). When com-
pared to random sequences, structural RNAs have, on average, a larger number of
high-frequency base pairs in the ensemble and in clusters, a smaller average base-pair
distance between the MFE structure and the ensemble, a smaller between-cluster and
within-cluster sums of squares. The precursor miRNAs show greater levels of distinc-
tion from their random shuffles (Table 3). Seven of the nine features are significantly
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different between the biological sequences and random sequences. These include the
five significant features for the structural RNAs, the number of clusters and the energy
gap between the MFE and the sampled ensemble. For the five features significant for
both the structural RNAs and the precursor miRNAs, the P values from paired t tests
for the precursor miRNAs are drastically lower than those for the structural RNAs. In
the tables, we observe substantial differences in the standard errors for some of the
features. A key assumption for the parametric t test is equal variances. We thus also
performed the corresponding nonparametric Wilcoxon matched pairs signed-rank test
that is not based on the equal variance assumption. The nonparametric test confirms
the significance or insignificance by the t test for all features and all three RNA types,
with the only exception for the number of clusters for the precursor miRNAs.

The distributions for two of the nine ensemble features are particularly intriguing.
For each type of RNA, a histogram plot for the number of high-frequency base pairs is
presented in Fig. 1. For mRNAs (Fig. 1a), a large degree of overlapping between the two
distributions for the biological sequences and random sequences is observed. Their
mean values, 0.2102 for mRNAs and 0.2137 for random shuffles, are comparable
as shown in the plot, with a poor P value of 0.7716 from the t test for testing the
difference in the means. For structural RNAs (Fig. 1b), the two mean values, 0.2583
for biological sequences and 0.2243 for random shuffles, are clearly separable from the
plot, which is consistent with a low P value of 3.559E-06 for testing the difference in
the means. The two distributions, however, still share an extensive overlapped region.
For precursor miRNAs, Fig. 1c exhibits a clear separation between the two distributions
for biological sequences and random sequences, with a significant gap between the
two means (0.3484 for biological, 0.2163 for random, and P value of 5.429E-28 for
the difference in the means). Intriguingly, the means for random shuffles for all three
types of RNAs are quite comparable. The observed differences are mainly due to the
increasing trend in the number of high-frequency base pairs from mRNAs to structural
RNAs and to precursor miRNAs, implying more stable and conserved structures for
precursor miRNAs and structural RNAs than for the mRNAs.

The other intriguing feature is the average base-pair distance between the MFE
structure and the sampled ensemble. Figure 2 shows the histogram plot of the ave-
rage base-pair distance for the mRNAs (Fig. 2a), the histogram for the structural RNAs
(Fig. 2b), and the histogram for the precursor miRNAs (Fig. 2c). Similarly, we
observe that the separation between distributions of the biological and random
sequences increases from mRNAs to structural RNAs and to precursor miRNAs. For
precursor miRNAs, in particular, the two distributions do not overlap at all. The ave-
rage base-pair distance between the MFE structure and the ensemble for biological
sequences is substantially shorter than the distance for random shuffles. This indicates
that the similarity between the MFE structure and the sampled structures for precursor
miRNAs is greater than that for their random shuffles.

4 Discussion

In this work, we have considered nine ensemble features for investigating the diffe-
rences between biological sequences and random shuffles. We found that mRNAs are
similar to their random shuffles, structural RNAs are different from random shuffles,
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Fig. 1 Distribution of the number of high-frequency base pairs in the ensemble normalized by sequence
length for biological sequences (in red), and the distribution for random sequences (in blue). The overlap
of the distributions is in purple. The histograms are shown for the 12 mRNAs (a), the 60 structural RNAs
(b), and the 46 precursor miRNAs (c)

123



102 C. Y. Chan, Y. Ding

Fig. 2 Distribution of the average base-pair distance between the MFE structure and the ensemble norma-
lized by sequence length for biological sequences (in red), and the distribution for random sequences (in
blue). The overlap of the distributions is in purple. The histograms are shown for the 12 mRNAs (a), the
60 structural RNAs (b), and the 46 precursor miRNAs (c)
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and there are much greater differences for precursor miRNAs. These findings are
consistent with the previous reports [5,10,20,26], thus further confirming conclusions
from these studies.

For randomization of RNA sequences, although dinucleotide shuffling has been
argued to be more appropriate than mononucleotide shuffling, it does not guarantee
the preservation of base-pair stacks in the predicted structure of the shuffled sequence.
Thus alternative randomization methods that can preserve certain structural features
warrant further investigation.

Our methods of investigation are different from methods used in the previous
studies. The calculation of the ensemble statistics takes advantage of our structure
sampling and clustering algorithms that have been shown to improve predictions for
structural RNAs [13] and to effectively represent the likely population of mRNA struc-
tures [14], by overcoming the limited representation by the optimal folding (i.e., the
MFE structure) or a heuristic set of suboptimal foldings [29]. Our previous studies
[14,15] have shown that a sample size of 1,000 structures is sufficient to guarantee
statistical reproducibility in typical sampling statistics. Larger structure samples will
yield improved precisions in sampling statistics, increased power for the statistical tests
and improved statistical significance. However, a drawback is the increased computa-
tional costs for structure clustering. In particular, memory requirement for clustering
will become an issue.

Base-pair distance as the measure of dissimilarity between structures provides ade-
quate discriminatory power for the purpose of clustering, and allows the transforma-
tion of the nonlinear problem of identifying the centroid structure into a simple linear
problem [13]. Alternative distance metrics [17,21] may better address insertions and
deletions. However, for comparison of structures generated for the same sequence,
evolutionary consideration is not relevant here. Furthermore, these alternative metrics
will introduce additional complexity to structure clustering, and the identification of
the centroid structure is an open problem.

Due to the heterogeneous nature of our sequence set, sequence length has been
chosen as the normalization factor for many of the ensemble features in order to
facilitate comparisons among the diverse types of RNAs. This normalization scheme
has proved to work well for energy-based models. However, it should be noted that
the percentage of base pairs in structures determined by comparative analysis is not
highly linear in sequence length. Nevertheless, this normalization scheme is a good
approximation in our context, because our comparisons are concerned with predicted
structures. For several ensemble features, e.g., the between/within-cluster sums of
squares and the number of high-frequency base pairs, our previous study on comparing
structural RNAs and mRNAs [14] has shown that the use of sequence length for
normalization is well justified.

For precursor miRNAs, a significant finding is the clear distributional separation
for the number of high-frequency base pairs in the ensemble, and for the average base-
pair distance between the MFE structure and the ensemble. Experimental cloning for
the discovery of new miRNA genes is both time-consuming and expensive, and the
success rate largely depends on the precision of technology for detecting small RNAs.
Computational methods can complement experimental techniques in miRNA gene
identification. Our finding here can be particularly useful in this endeavor.
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