Chapter 2
RNA Secondary Structure Prediction and Gene
Regulation by Small RNAs

Ye Ding

2.1 Introduction

RNA molecules are involved in some of the cell’s most fundamental processes that
include catalysis, pre-mRNA splicing and RNA editing, and regulation of transcrip-
tion and translation. To a large degree, the function of a regulatory RNA molecule is
determined by its structure. Computational methods for modeling RNA secondary
structure provide useful initial models for solving the tertiary structure by crys-
tallography or nuclear magnetic resonance (NMR). The problem of computational
prediction of secondary structure for a single RNA sequence dates back to the early
1970s [99]. Free energy minimization has been an important method for such pre-
diction. The partition function approach by McCaskill enables rigorous computation
of base-pair probabilities and heat capacity [70]. In recent years, there has been in-
creasing interest in ensemble-base approaches that extend the pioneering work of
McCaskill. In this chapter, we briefly review these developments. Gene silencing by
RNA interference and posttranscriptional gene regulation by microRNAs are funda-
mental discoveries in molecular biology. Rational design of short interfering RNAs
for improving potency of gene silencing and regulatory target prediction for mi-
croRNAs are two important computational problems. We here review work from
our group and others to show that target mRNA secondary structure is important for
both efficient gene silencing and microRNA target recognition.
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2.2 RNA Secondary Structure Prediction

RNA plays a variety of important functional roles that include catalysis, RNA splic-
ing, and regulation of transcription and translation. These roles are typically carried
out at specific RNA structural sites, often through molecular interactions or con-
formational change. Hence, the function of an RNA molecule is primarily deter-
mined by its secondary and tertiary structures. RNA tertiary interactions involve
secondary structure elements and are substantially weaker than secondary inter-
actions. Thus, to a large extent, the free energies in secondary structure represent
the thermodynamics of RNA folding. The tendency for RNA folding to be primar-
ily driven by secondary structure features is a tremendous advantage for structural
and functional studies on RNAs. Furthermore, computational RNA tertiary struc-
ture prediction without experimental information is an intractable problem, and the
thermodynamics of tertiary interactions have not been well characterized. In addi-
tion, RNA secondary structure is well conserved in evolution. For these reasons,
computational algorithms have focused on RNA secondary structure prediction in
the last several decades. Given an RNA sequence, a secondary structure is simply
defined by a list of base pairs, typically Watson—Crick (GeC or A-U) and Wobble
G-U. As shown by Fig. 2.1 for a predicted minimum free-energy structure for Xlo
5S rRNA, helices and loops of various types represent basic structural elements of
RNA secondary structure.

2.2.1 Free Energy Minimization

In structural computational biology, free-energy minimization for prediction of
macromolecular folding is a long-established paradigm. It assumes that, at equi-
librium, the solution to the underlying molecular folding problem is unique and
that the molecule folds into the lowest-energy state. Also, it is implicitly assumed
that the free energies of individual structural motifs are additive. This paradigm had
been the foundation for prediction of RNA secondary structure for several decades
[67, 68, 74, 99, 116]. For RNA secondary structure prediction, free-energy param-
eters for basic structural motifs are estimated or extrapolated from chemical melt-
ing experiments [67, 68, 110]. The discrete optimization problem is ill-conditioned,
in that the prediction is sensitive to small changes in the energy parameters [53,
115]. Furthermore, there is substantial uncertainty in the energy parameters, par-
ticularly for loops. For these reasons, efficient algorithms have been developed for
not only computing the minimum free energy (MFE) structure, but also for gener-
ating a heuristic set of suboptimal structures [67, 68, 116]. An alternative approach
computes all suboptimal foldings within an energy increment above the MFE [109].
The exponential growth in the number of these foldings motivated the development
of the RNAshapes method for the efficient representation of the near-optimal fold-
ings [36]. The complete suboptimal approach addresses the low-energy end of the
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M loop

H loop

Fig. 2.1 The minimum free-energy structure for Xlo 5S rRNA and all types of secondary structural
elements: helix (formed by stacked base pairs), bulge loop (B loop), interior loop (I loop), hairpin
loop (H loop), and multibranched loop (M loop)

unweighted energy landscape. Neither approach guarantees an unbiased represen-
tation of the Boltzmann-weighted ensemble. The free-energy minimization algo-
rithm [116] and the algorithm for computing suboptimal structures [109] have been
extended for two or more interacting RNAs [3].

2.2.2 Partition Function Approach

In a drastic departure from free-energy minimization, the partition function ap-
proach pioneered by McCaskill (1990) [70] laid the foundation for statistical char-
acterizations of the equilibrium ensemble of RNA secondary structures. In par-
ticular, base-pair probabilities can be calculated. Similar to its MFE counterpart,
the algorithm for computing partition function and base-pair probabilities is cubic
and requires quadratic storage. The significance of base-pair probabilities has been
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further demonstrated in two studies. For base pairs in the MFE structure, those with
higher probabilities have higher predictive accuracy measured by positive predictive
value [64]. The positive predictive value is the percentage of base pairs in the pre-
dicted structure that are in the structure determined by comparative sequence anal-
ysis. Thus, base-pair probabilities provide measures of confidence for MFE predic-
tions. That study was based on an extended partition function algorithm that accom-
modated coaxial stacking and more recent energy parameters. Furthermore, base-
pair probabilities are found to be less affected by uncertainties in energy parameters
than is the MFE structure [53]. The McCaskill algorithm has also been extended
to include a class of pseudoknots [29, 30]. Like the partition function, the mean
and variance (and any moments in general) of the Boltzmann-weighted free-energy
distribution can be calculated, and these ensemble characteristics are reported to be
useful for distinguishing biological sequences from random sequences [71]. A par-
tition function algorithm for k-point mutants of an RNA sequence has recently been
described [17]. For modeling the hybridization of two nucleic acid molecules, the
Zuker group was the first to compute partition function and base-pair probabili-
ties [21]. These developments are indicative of a paradigm shift towards ensemble-
based approaches.

2.2.3 Statistical Sampling Approach

In the traceback step of an RNA folding algorithm, base pairs are generated one at a
time according a chosen principle (e.g., energy minimization or probabilistic sam-
pling as discussed below) to form a secondary structure. The long-standing problem
of a statistical representation of probable foldings can be addressed by a sampling
extension of the partition function approach [24]. In the traceback step, the con-
ditional probabilities computed with partition functions are used to sample a new
base-pair or unpaired base(s), given partially formed structure. Thus, the essence of
the sampling algorithm is stochastic traceback. The Boltzmann distribution in sta-
tistical mechanics gives the probability of a secondary structure  at equilibrium as
exp[—E(1)/RT]/U, where E(I)/ is the free energy of the structure, R is the gas
constant, T is the absolute temperature, and U is the partition function for all admis-
sible secondary structures of the RNA sequence, i.e., U = Y, exp[—E(I)/RT]. The
sampling algorithm generates a sample of secondary structures in proportion to their
Boltzmann probabilities, guaranteeing a statistical representation of the Boltzmann-
weighted ensemble.

A statistical sample of the ensemble allows sampling estimates of the probabil-
ities of any structural motifs, from the simplest elements of base pair and unpaired
base, to loops of various types, to more complex structures consisting of stems and
loops that may be of special interest in a given application. In particular, proba-
bility profiling of single-stranded regions in RNA secondary structure is directly
applicable to the rational design of mRNA-targeting nucleic acids [22-26]. The
Boltzmann-weighted density of states (BWDOS) [24] characterizes the weighted
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energy landscape, whereas a density-of-states algorithm [19], applicable only to
short sequences, describes the unweighted landscape. A structure sample can also
be used for computation of other characteristics of the Boltzmann ensemble. For ex-
ample, the mean and the variance of the free-energy distribution can be estimated by
a sample, whereas exact calculations require laborious algorithm development [71].
In principle, a sampling extension can also be developed for a partition function
algorithm including pseudoknots. In this case, base-pair probabilities can be esti-
mated by a sample, and the estimates should closely approximate those computed
by a high-order algorithm [30].

A sample of moderate size drawn from the ensemble of an enormous num-
ber of possible structures is sufficient to guarantee statistical reproducibility in the
estimates of typical sampling statistics. The reproducibility is best demonstrated
when two independent samples do not have a single structure in common [24, 28].
These seemingly surprising observations are fully expected for an exact sampling
algorithm. The sampling algorithm is the basis of the Sfold RNA software pack-
age [26] and has been implemented into other RNA folding software including
UNAfold [63], Vienna RNA package [42], and RNAstructure [65]. Sampling was
adapted for probabilistic representation of structure shapes for RNA sequences of
moderate length or longer [107]. A method has been presented to speed up the sam-
pling step [80].

2.2.4 Cluster and Centroid Representation of Boltzmann Ensemble

In the sampled ensemble, distinct structural clusters were observed [24]. This ob-
servation suggested that the Boltzmann ensemble could be efficiently represented
by clusters. Automated clustering procedure and tools have been developed for this
purpose [13, 27, 28]. The procedure returns three to four clusters on average. An-
other advantage of clustering is that the centroid structure, as the single best repre-
sentative of the cluster, can be easily identified with little computational cost. The
centroid of any set of structures is defined as the structure in the whole ensemble
that has the shortest total distance to structures in the set. For the base-pair distance
between two structures, the centroid is simply the structure formed by all base pairs
having a frequency > 0.5 in the structure set [27]. The clusters, together with their
-probabilities (estimated by frequencies in the sample) and their centroids, present a
complete and efficient statistical characterization of the Boltzmann ensemble. Simi-
lar to the reproducibility of ensemble-level sampling statistics [24], the clusters and
centroids are also statistically reproducible from one sample to another, even when
the two independent samples do not share a single structure [28]. The centroid of
the sampled ensemble and the best cluster centroid provide alternative structural
predictions. It was a surprising finding that these predictions are substantially im-
proved over the minimum free energy predictions [27], a result that further validates
ensemble-based approaches. The idea of centroid has generated considerable inter-
est. Generalized centroid estimators for bioinformatics problems in particular RNA
secondary structure prediction have been proposed [12, 38].



24 Y. Ding

Fig. 2.2 Post-transcriptional Diced

regulation by shRNAs or 5 ShRNA

siRNAs. An shRNA (with a , I )

typically 19-29 bp stem) can 3 t

be processed by Dicer into an QiceD

siRNA. The guide strand in siRNA duplex

the assembled RISC guides T

target recognition by 3 5

complementary base-pairing.

Target cleavage by RNAi RISC Assembly

machinery is triggered by

perfect complementarity. 3" Guide . 9

Partial complementarity can / \

induce off-target mRNA

cleavage or repression of gene
expression via microRNA 1111111 Kl 11711
pathway, for which the seed 5 35 Seed 3
base-pair match (in red) L

involving nt 2 to nt 7 or 8 of Target cleavage Off-target cleavage
the 5’ end of the guide strand for complete or repression via
is reported to be important complementarity microRNA mechanism

2.3 Gene Silencing by Small Interfering RNAs

RNA interference (RNAI) is a sequence-specific gene silencing mechanism that is
induced by double-stranded RNA (dsRNA) homologous to the target gene [35].
RNAI can be mediated either by small interfering RNAs (siRNAs) of about 21 nt
with two-nucleotide 3’ overhang [33], or by stably expressed short hairpin RNAs
(shRNAs) that are processed by Dicer into siRNAs [9, 76]. During activation of the
RNA-induced silencing complex (RISC), the guide (antisense) strand of the siRNA
duplex is preferentially assembled into the RISC when the stem formed by the 5’ end
and its complement is less stable than the one formed by the 3’ end and its comple-
ment [49, 90]; the “passenger” (sense) strand is cleaved by Argonaute2 (Ago2), the
catalytic component of RISC [69, 82]. The antisense strand guides Ago2 to cleave
mRNA by perfect base-pairing with the complementary site in the target (Fig. 2.2).
In comparison with antisense oligos or trans-cleaving ribozymes for gene knock-
down, RNAI generally offers greater potency and target specificity. As the method
of choice for loss-of-function studies in mammalian systems and drug target vali-
dation, RNAi has revolutionized basic biology study and drug discovery research.
In addition, novel RNAi-based therapeutic agents for treating a variety of human
diseases have been under development, most notably by Alnylam Pharmaceuticals.

2.3.1 Design Rules for Improving Potency

Large variation in the efficiency of siRNAs for different sites on the same target
is commonly observed [43]. Usually, only a small proportion of randomly selected
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siRNAs are potent. Thus, there has been a great interest in determining rules for the
improvement of RNAI design. A number of empirical rules on siRNA duplex fea-
tures have been reported. These include the asymmetry rule for siRNA duplex ends,
which requires that the 5’ end of the antisense strand forms a stem with its comple-
ment that is less stable than the stem formed by the 5’ end of the sense strand [49,
90]. The asymmetry rule is strongly related to the requirements of high A/U con-
tent at the 5’ end of the antisense strand and high G/C at the 5’ end of the sense
strand [84, 101]. A number of position-specific nucleotide preferences and other
siRNA sequence features have been proposed [78, 84]. In addition, the importance
of target secondary structure and accessibility has been suggested by several studies
based on computational modeling of target structure and accessibility [41, 50, 51,
61, 62, 89, 94, 97] and was supported by compelling evidence based on experimen-
tally assessed accessibility [2, 7, 54, 75, 106, 108].

2.3.2 Structure Based Assessment of Target Accessibility

A number of approaches have been published for quantifying target site accessibil-
ity for rational design of RNA-targeting nucleic acids. Based on target structures
predicted by RNA folding algorithms, these methods are either probabilistic or en-
ergetic. Probabilistic methods assess the probability that a base or a block of bases is
single stranded [23, 70, 73], whereas energetic methods model the energy exchanges
of the hybridization process [59-61, 66, 93-95], arguably providing more refined
measures of accessibility. For example, consider two target sites with (nearly) equal
probability of being single stranded. If one site has high AU and the other has high
GC, then the energetic costs for disrupting the target structure and the stabilities of
the hybrid could be quite different for the two sites. In data analysis for some of our
studies, energy measures were observed to give improved correlations than proba-
bilistic measures. Thus, our efforts have focused on energetic models. Below, we
briefly discuss several major methods.

The Sfold structure sample [24, 26] allows computation of both probabilistic
measures [23] and energetic measures of target accessibility [59, 60, 93-95]. It is
well established that a single-stranded block of 4-5 nts can facilitate the nucleation
step of the hybridization [40, 112]. Thus, a moderate structure sample is sufficient
for revealing potential effective sites by using block size of 4 nts for accessibil-
ity profiling [23]. The major advantage of using the structure sampling algorithm
is that the time-consuming partition-function calculation for the whole target se-
quence only needs to be computed once. Folding constraints such as maximum nu-
cleotide distance L for two bases to form a pair can be imposed for “local” folding.
Such local folding was found to be significant for prokaryotic applications [93]. For
prokaryotes, transcription and translation are tightly coupled events so that the tar-
get mRNA is unlikely to be able to fold globally. In contrast, eukaryotic mRNAs
are first transcribed in nucleus and then transported to cytoplasm where they can
conceivably fold globally before they engage in interactions with other molecules
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in the cytoplasm for regulation of gene translation. Global folding using Sfold sam-
pling algorithm can reveal highly unstructured sites that are well “conserved” in the
likely mRNA structure population. These well-predicted sites can be valuable for
the selection of effective target sites.

Target site disruption energy, AGaisruption, i the energy cost of local disrup-
tion of the mRNA structure so that the binding site becomes completely single
stranded [94]. A largely single-stranded (i.e., structurally accessible) site does not
require substantial structure alteration for the guide siRNA strand to bind to the tar-
get. AGyisruption 1S @ quantitative measure of the structural accessibility at the target
site and is calculated based on target secondary structures predicted by Sfold [26] to
address the likely population of mRNA structures. We found in data analysis, as
illustrated by Fig. 2.3, that target accessibility is an important determinant of RNAi
activity and the asymmetry of siRNA duplex asymmetry is important for facilitating
RISC assembly [94]. We also found that the commonly observed negative effect of
high siRNA GC-content on RNAI potency is due to generally poor target accessibil-
ity for a high GC target site which is likely to have stable secondary structure [14],
rather than the likelihood that the high GC siRNA guide strand may form stable
intramolecular secondary structure as previously suggested [78].

An alternative to the local disruption assumption is the global disruption model.
For this model, as a result of siRNA:mRNA hybridization, the base pairs outside the
target site can be rearranged so that the mRNA adopts a new globally altered struc-
ture. In this case, the free energy of the target secondary structure after siRNA bind-
ing must be recalculated by refolding the mRNA with the binding site constrained
to be unpaired. This constraint option has been implemented in Sfold and available
through the Sfold web server [26]. However, refolding will cost a hefty computa-
tional price. This global model is essentially equivalent to an approach based on
exact calculation of ensemble free energies from initial folding and refolding [61].
This approach makes the assumption that the target will reestablish structure equi-
librium after siRNA binding. The analysis of siRNA datasets in our study suggests
that target cleavage by RNAi machinery appear to be rather rapid so that the target
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may not have time to refold before cleavage [94]. While this issue warrants further
investigation, data analysis using ensemble energies also confirmed the importance
of target secondary structure in RNAI activity [61].

An extension of the McCaskill algorithm [70] can compute the probability that
a block of nucleotides is single stranded [73]. However, for each block, this exten-
sion requires recomputation of the partition functions for the entire RNA and is too
time consuming to be efficient for scanning through all possible blocks of a long
RNA in the search of best target sites. To handle this problem for RNAI application,
a short local RNA folding window of size W was used, along with L and block
length u [97]. These treatments introduce substantial uncertainty in computational
analysis. Indeed, for u, the empirically selected optimal values are quite different
for two training datasets [97], raising the concern of the general applicability of
optimal parameter values learned from one source of data. For a specific mRNA,
because it is not possible to have accurate information on its independent folding
domains which may be better predicted individually, the overall prediction accuracy
would be compromised by a prespecified local folding window length that does
not suit this specific mRNA. The major findings from this study are the same as
we previously reported [94], i.e., target accessibility as a down stream factor in the
RNAIi pathway and duplex asymmetry for facilitating RISC assembly [49, 90] are
two most important factors for RNAI efficiency.

2.3.3 Specificity and Off-targeting

Gene silencing by RNAI can be highly gene-specific [16, 92]. Single base-pair mis-
matches could drastically alter RNAi efficacy [33, 43], and siRNAs can be designed
to discriminate the wild-type and mutant alleles of many genes that differ by just s
single nucleotide [91]. However, off-target gene regulation by RNAi has been ob-
served [45, 88]. Each strand of an siRNA duplex can possibly be assembled into the
RISC to guide recognition of both fully and partially complementary mRNAs [79].
Off-target activity results from partial complementarity for nontargeted genes. Off-
targeting can induce measurable phenotypes [58] and thus represents a major im-
pediment to large-scale phonotypic screening applications of RNAi. While chem-
ical modification of siRNA duplexes may reduce off-target effects [15, 46], it is
essential to take into account the issue of target specificity in the design of siRNAs
or shRNAs. Microarray studies suggest that off-targeting is mainly associated with
perfect 3’ UTR matches for nucleotide positions 2-7 or 8 (hexamer or heptamer
“seed” [57]; see Fig. 2.2) of the 5’ end of the siRNA guide strand [5, 47]. The seed
region is an important determinant for target recognition by microRNAs [57]. How-
ever, in these microarray studies, the number of mRNAs with seed matches is far
greater than the number of actual off-targets. In addition, two recent studies reported
either a lack of enrichment for either 3’ UTR or seed matches [100] or a substan-
tial number of off-targets that do not have a seed match [103]. These observations
strongly indicate that additional factors responsible for off-target effects remain to
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be identified. In general, it is advisable that an siRNA or shRNA contains at least
three mismatches to any other genes in the genome of the species under study, that
known single-nucleotide polymorphism should be avoided, and that common ex-
ons of alternatively spliced mRNAs should be avoided as well [77]. For a complete
suite of RNAi design tools, it is essential to address both the issue of gene siléncing
potency and the issue of targeting specificity. This is particularly important for large-
scale loss-of-function screens by using siRNA libraries [32] or shRNA libraries [10,
87, 96].

2.4 Posttranscriptional Gene Regulation by MicroRNAs

MicroRNAs are endogenous noncoding RNAs (ncRNAs) of ~22 nt and are among
the most abundant regulatory molecules in multicellular organisms. microRNAs
typically negatively regulate specific mRNA targets through essentially two mech-
anisms: (1) when a microRNA is perfectly or nearly perfectly complementary to
mRNA target sites, as is the case for most plant microRNA, it causes mRNA target
cleavage [85]; and (2) a microRNA with incomplete complementarity to sequences
in the 3’ untranslated region (3’ UTR) of its target (as is the case for most ani-
mal microRNAs) can cause translational repression or mRNA destabilization [34].
microRNAs regulate diverse developmental and physiological processes in animals
and plants [1, 6, 11, 31, 102]. Besides animals and plants, microRNAs have also
been discovered in viruses [18].

2.4.1 Target Identification Using Sequence Features

Identification and experimental validation of microRNA targets are essential for un-
derstanding the regulatory functions of this important class of ncRNAs. The targets
and functions of plant microRNAs are relatively easy to identify due to the near-
perfect complementarity [85]. By contrast, the incomplete target complementarity
typical of animal microRNAs implies a huge regulatory potential but also presents a
challenge for target identification. A number of algorithms have been developed for
predicting animal microRNA targets. A common approach relies on a “seed” model
based on a critical observation by Lai [52], wherein the target site is assumed to
form strictly Watson-Crick (WC) pairs with bases at positions 2 through 7 or 8 of
the 5’ end of the microRNA (see Fig. 2.2). In the stricter, “conserved seed” formula-
tion of the model, perfect conservation of the 5’ seed match in the target is required
across multiple species [56, 57]. One well-known exception to the seed model is the
interaction between let-7 on lin-41 in C. elegans, as shown by Fig. 2.4, for which
G-U pair and unpaired base(s) are present in the seed regions of two binding sites
with experimental support [104]. While the seed model is supported as a basis for
identifying many well-conserved microRNA targets [81], two studies suggest that
G-U or mismatches in the seed region can be well tolerated and that conserved seed
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3'uy AU 3'uy AU
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lin-41 mRNA U G,u A U AR
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Fig. 2.4 let-7 regulates lin-41 by complementary base-pairing at two sites in the 3’ UTR of the
lin-41 mRNA [104, 105]. Neither the bulged A in the seed region for site 1 (in red, at position 5
from the 5’ end of the 27 nt spacer) nor the wobble G-U pair in the seed region for site 2 (in red,
with U at position 6 of the 5’ end of let-7) meets the requirements of the seed model [56, 57] that
bases 2 to 7 or 8 of the miRNA 5’ end must form Watson—Crick pairs with its target (for the color
version, see Color Plates on p. 389)

match does not guarantee repression [20, 72]. These suggest that the seed model
may represent only a subset of functional target sites and that additional factors are
involved in further defining target specificity at least for some cases with conserved
seed matches. A comprehensive study led to the proposal of three classes of target
sites: “canonical”, “seed”, and “3’ compensatory” [8]. A canonical site pairs well
with a microRNA on both the 5" end and the 3’ end; a seed site has strong pairing
to the 5’ end of the microRNA, with little or no pairing required on the 3” end to
stabilize the hybrid; a 3’ compensatory site requires strong pairing to the 3’ end of
the microRNA to compensate for weak pairing on the 5’ end. Most genetically val-
idated target sites appear to be of the canonical configuration, including the sites
for let-7: lin-41 (see Fig. 2.4). In addition to seed match, a number of features of
site context have been proposed for enhancing targeting specificity [37]. More re-
cently, functional target sites within the protein coding region of mouse mRNAs
have been reported, and four of five validated mouse targets do not contain sites
with seed match [98]. Also interestingly, a new class of human microRNA targets
was reported to contain interaction sites in both the 5' UTR and the 3’ UTR, and
the 3’ end of the microRNAs are primarily involved in target binding for 5 UTR
sites [55].

2.4.2 A Target Structure-Based Model for MicroRNA: Target
Hybridization

To attempt to understand the exceptions to the seed model and to develop target
prediction methodology that does not rely on but can incorporate sequences fea-
tures such as seed match, we considered the secondary structure of target mRNA
that has been found to be important for other types of mRNA-targeting nucleic
acids including siRNAs. We developed a model for modeling the interaction be-
tween a microRNA and a target as a two-step hybridization reaction (see Fig. 2.5):
nucleation at an accessible target site, followed by hybrid elongation to disrupt lo-
cal target secondary structure and form the complete microRNA-target duplex [59].
Nucleation potential and hybridization energy are two key energetic characteristics
of the model. In this model, the role of target secondary structure on the efficacy
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Fig. 2.5 Two-step model of hybridization between a small (partially) complementary nucleic acid
molecule and a structured mRNA: (1) nucleation at an accessible site of at least 4 or 5 unpaired
bases (A); (2) elongation through “unzipping” of the nearby helix, resulting in altered local target
structure (B)

of repression by microRNAs is taken into account, by employing the Sfold pro-
gram to address the likelihood of a population of structures that coexist in dynamic
equilibrium for a specific mMRNA molecule. This model can accurately account for
the sensitivity to repression by ler-7 of both published and rationally designed mu-
tant forms of the Caenorhabditis elegans lin-41 3' UTR, and for the behavior of
many other experimentally tested microRNA-target interactions in C. elegans and
Drosophila melanogaster. The model is particularly effective in accounting for cer-
tain false positive predictions obtained by other methods. The model also performed
well in a study of mammalian and viral microRNA targets [60].

In a more recent study [39], we analyzed a set of 3404 transcripts in C. ele-
gans that were suggested by immunoprecipitation (IP) to be the targets for worm
microRNAs [111]. Enrichment analyses by comparing targets and nontargets (i.e.,
transcripts absent in the IP dataset) revealed several important parameters. These in-
clude 5’ seed and modifications, structural accessibility of both the target site and the
25 nt-region upstream of the target site as assessed by target structures predicted by
Sfold, the nucleation potential and the total energy change of the hybridization de-
scribed in our previous work [59]. We developed a method to incorporate these sig-
nificant parameters into worm microRNA target predictions. This method was found
to make much better predictions than several well-known algorithms. Surprisingly,
for this large target dataset, there was a lack of correlation for the contextual fea-
tures based on analysis of microarray data for a small number of microRNAs [37].
In an independent study, three prediction parameters were analyzed for 6,387 candi-
date microRNA-target interactions between 114 human microRNAs and 890 mRNA
transcripts, with patterns of expression across 88 human tissue samples [44]. These
three parameters are the total energy change of the hybridization [59], the context
score based on contextual features [37], and a core for measuring site conservation.
It was found that only the total energy change of the hybridization is predictive
of paired microRNA and mRNA expression data. Thus, the results from analyses of
these large datasets not only further support our structure-based hybridization model
but also cast doubts on the general applicability of the contextual features proposed
from analysis of a relatively small microarray dataset. Results from microarray data
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may not be highly reliable, due to inherent limitations and difficulty in the interpre-
tation of the microarray data. For example, it has been shown that the secondary
structure of the target is important for microarray probe design and data interpre-
tation [83]. However, this issue has been largely overlooked in the analysis of mi-
croarray data. The importance of target structural accessibility is also supported by
several other studies [48, 86, 113, 114].

2.5 Concluding Remarks

The paradigm-shifting work by McCaskill has inspired the developments of ex-
tended partition function algorithms for modeling single molecular folding and hy-
bridization of two nucleic acid molecules, sampling extension and clustering rep-
resentation of sampled ensemble. These methods enable characterizations of the
equilibrium structure ensemble that are not possible with the use of free energy
minimization.

For improving the potency of RNAI, target structure is clearly an important fac-
tor in the design of siRNAs. Several existing methods use different assumptions and
treatments in parameter calculations for RNAi design. It is not clear whether one ap-
proach is superior to the other. Clearly, analyses of large datasets would be needed
to compare these methods and to further investigate relevant issues such as the va-
lidity of global or local target folding. Off-targeting by RNAI is a major impediment
for large-scale RNAi screening. 3" UTR seed match can explain some but not all
of observed off-target effects. It remains a challenge to identify additional factors
responsible for off-target effects for improving the specificity of gene silencing.

It has been established that microRNAs can also target protein coding regions and
5" UTR, in addition to 3’ UTR, and target binding can primarily involve the 5’ end or
the 3’ end, or both ends of the microRNA. Seed match may represent a major class of
target sites; however, it remains a challenge to estimate how large this class and other
classes of targets are, which will require large-scale carefully designed experiments
and analysis. Because seed pairing and contextual features are learned from small
number of highly expressed microRNAs [4], the ratios of different classes of targets
may well depend on the abundance of the microRNAs. It is conceivable that strong
pairing for both 5’ end and the 3’ end can be essential for a microRNA of low
abundance. The strength of microRNA-target hybridization would depend on the
expression levels of the microRNA and its target. Incorporation of concentrations of
microRNAs and target mRNAs will be a logical step for extension of hybridization
modeling, as some data for expression levels have become available. Since target
binding by microRNA can lead to two regulatory outcomes, translational repression
or target mRNA degradation, it is an open question whether it is possible to predict
the two outcomes.
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