
doi:10.1016/j.jmb.2006.01.056 J. Mol. Biol. (2006) 359, 554–571
Clustering of RNA Secondary Structures
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There is growing evidence of translational gene regulation at the mRNA
level, and of the important roles of RNA secondary structure in these
regulatory processes. Because mRNAs likely exist in a population of
structures, the popular free energy minimization approach may not be well
suited to prediction of mRNA structures in studies of post-transcriptional
regulation. Here, we describe an alternative procedure for the character-
ization of mRNA structures, in which structures sampled from the
Boltzmann-weighted ensemble of RNA secondary structures are clustered.
Based on a random sample of full-length human mRNAs, we find that the
minimum free energy (MFE) structure often poorly represents the
Boltzmann ensemble, that the ensemble often contains multiple structural
clusters, and that the centroids of a small number of structural clusters
more effectively characterize the ensemble. We show that cluster-level
characteristics and statistics are statistically reproducible. In a comparison
between mRNAs and structural RNAs, similarity is observed for the
number of clusters and the energy gap between the MFE structure and the
sampled ensemble. However, for structural RNAs, there are more high-
frequency base-pairs in both the Boltzmann ensemble and the clusters, and
the clusters are more compact. The clustering features have been
incorporated into the Sfold software package for nucleic acid folding and
design.
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Introduction

A growing number of gene regulation processes
are known to be mediated by mRNA secondary
structure. In prokaryotes, the efficiency of trans-
lation initiation is modulated by the structure of the
ribosome binding site.1 In eukaryotes, translation
can be inhibited by increasing secondary structure
in either the 5 0 untranslated region (UTR) or the
coding region,2,3 or can be regulated by structural
features as mediators for the binding of proteins to
repress or activate initiation of translation.4 In
addition, gene expression can be post-transcrip-
tionally regulated through interaction between the
mRNA and a small nucleic acid molecule of
complete or partial complementarity. Examples
include translational inhibition by antisense
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oligonucleotides and target cleavage by ribozymes
in both eukaryotes and prokaryotes,5,6 and more
recently gene silencing by RNA interference (RNAi)
mediated by short interfering RNAs (siRNA) in
eukaryotic organisms,7,8 and translational repres-
sion by microRNAs (miRNAs) in animals and
plants.9,10 Furthermore, in prokaryotes, transcrip-
tional and translational regulation by riboswitches
in the 5 0 UTRs has emerged as an important cis-
regulatory mechanism,11 in addition to non-meta-
bolite-mediated transcriptional attenuation by
alternative structures of leader transcripts12,13 and
regulation of mRNA stability and decay by stem–
loop structures in the 3 0 UTRs.14–16 In eukaryotes,
riboswitches may control pre-mRNA splicing.17–19

RNA secondary structure features are also involved
in RNA editing.20,21 The recently discovered regu-
latory mechanisms of RNAs have generated much
excitement in the scientific community.

The strength of the base-pairing interaction
between an mRNA and a small nucleic acid
molecule is modulated by the secondary structure
of the target mRNA.22–29 Riboswitches regulate
d.



Figure 1. CH index profile for numbers of clusters
ranging from 2 to 20 for the mRNA sequence (1634 nt,
GenBank accession no. NM_004019, and ID 081) of
transcript variant Dp40 for H. sapiens dystrophin (mus-
cular dystrophy, Duchenne and Becker types (DMD)).
The optimal number of clusters for this sequence is three,
the highest value on the profile.
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translation through conformational change in the
5 0 UTR of the mRNA upon binding by a meta-
bolite.30 For the cIII gene of bacteriophage l, two
alternative structures were elucidated experimen-
tally for the short mRNA of 132 nt and were
proposed to regulate cIII expression.31 One struc-
ture favors translation through accessible initiation
codon and the Shine–Dalgarno sequence, and the
other inhibits translation with poor accessibility.
Although the structure of mRNA is important for
numerous gene regulatory mechanisms, experi-
mental determination of mRNA structure is gener-
ally difficult, and computational approaches have
so far proved to be less than optimal. One
impediment to the prediction of mRNA structures
may stem from the likelihood that mRNAs exist in a
population of structures,32 as evidenced bymultiple
mRNA conformations in an equilibrium mixture.33

Accordingly, computational secondary structure
predictions based on free energy minimization
may be poorly suited to this task.

In a departure from the long-established and
productive paradigm of predicting RNA secondary
structure via free energy minimization, we recently
described an alternative for the characterization of
the Boltzmann-weighted ensemble of RNA second-
ary structures.34 In this approach, a statistically
representative sample from the Boltzmann-
weighted ensemble of RNA secondary structures
is drawn. Such samples can faithfully and repro-
ducibly characterize structure ensembles of enor-
mous sizes. For example, it is striking but not
surprising that samples of 1000 structures repro-
ducibly represent Boltzmann ensemble of over 10300

RNA secondary structures.34

Here, we describe a procedure to capture the
main features of the Boltzmann-weighted ensemble
of structures by a small number of representative
structures. This procedure has three steps: drawing
of a statistical sample of RNA secondary struc-
tures,34 clustering of the sampled structures, and
determination of the centroids of these clusters.35

The clustering step has been outlined briefly.35

Here, we focus on describing the clustering method
and cluster visual representations in complete
details. The procedure is applied to 100 full-length
human mRNAs that are randomly selected. The
minimum free energy (MFE) structures for these
100 mRNAs have Boltzmann probabilities ranging
from 1.07!10K5 for the shortest mRNA of 425 nt to
2.54!10K141 for the longest mRNA of 8458 nt. For
each of these 100 mRNAs, 1000 secondary struc-
tures are sampled from the Boltzmann ensemble,
and the MFE structure is determined. The sampled
structures for each mRNA are then clustered, and
the centroid of the ensemble and the centroids of
individual clusters of structures are identified. For
only 29% of the mRNA sequences, the MFE
structure is in a dominant cluster. The ensemble
centroid represents the ensemble substantially
better than does the MFE structure, and the
improvement is the largest when the MFE structure
is not in the dominant cluster. For a given cluster,
the cluster centroid represents the cluster better
than does either the ensemble centroid or the MFE
structure. In the case of no single dominant cluster,
the cluster centroids represent the ensemble better
than does the ensemble centroid. The clusters and
centroids effectively delineate statistical character-
istics in the Boltzmann ensemble. Cluster-level
characteristics and statistics are shown to be also
statistically reproducible. In a comparison between
mRNAs and structural RNAs, similarities and
differences in clustering features are identified.
The clustering features and tools have been
incorporated into the Sfold software package for
nucleic acid folding and design.
Results

Clustering results of mRNAs

As an example to illustrate the clustering
procedure and distinct features among the clusters,
we begin this section with a description of the
clustering results for the mRNA of Homo sapiens
dystrophin (muscular dystrophy, Duchenne and
Becker types (DMD)) for transcript variant Dp40
(1634 nt; GenBank accession no. NM_004019, and
sequence ID 081). This description is followed by
findings from the clustering results for all of the 100
mRNAs. The last two subsections give a compari-
son between the representativeness of these cen-
troids and the representativeness of the MFE
structure.
An example of clustering

For the mRNA of H. sapiens dystrophin, three
distinct clusters are indicated by the CH index
(see Methods) (Figure 1). Since our procedure



Figure 2. Two-dimensional representation of multi-dimensional scaling of all of the 1000 sampled structures and the
MFE structure for the mRNA sequence of transcript variant Dp40 for H. sapiens dystrophin. Blue diamonds, green
triangles and pink circles represent structures in the largest cluster, the second-largest cluster, and the smallest cluster,
respectively. The MFE structure is in the second-largest cluster, and is represented by the red filled circle with
coordinates (X, Y)Z(K266.9, 56.6).
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samples structures in accordance with their Boltz-
mann-weighted probabilities, the probability of a
cluster can be estimated by the frequency of the
cluster in the sample. The probabilities of the
three clusters are 0.754, 0.161, and 0.085, respect-
ively. The MFE structure is in the second largest
cluster. The three clusters are well separated in the
two-dimensional representation of the multi-
dimensional scaling (Figure 2).

We use the centroid of a cluster as a representa-
tive of the cluster.35 Substantial differences among
the clusters can be appreciated from the two-
dimensional histograms of the clusters
(Figure 3(a)–(c)) and from the circle diagrams of
the centroids of the clusters (Figure 3(d)–(f)). The
circle diagrams were produced by the Sir_graph
program developed by Stewart & Zuker.36 For
example, in the first centroid structure, a local
helical structure involves bases in the nucleotides
377 to 437 region and bases in the nucleotides 492 to
566 region (Figure 3(d)), and another local helical
structure involves bases in the nucleotides 1156 to
1206 region and bases in the nucleotides 1376 to
1445 region. In the centroid of the second cluster,
however, the above local structures are replaced by
long-range interactions involving bases in the
nucleotides 485 to 568 region and bases in the
nucleotides 1156 to 1320 region (Figure 3(e)).
Transition from one of these local structures to the
other would require breakage and reformation of
113 base-pairs. The centroid of the third cluster
requires another reconfiguration of the first local
helical structure in the centroid of the first cluster, as
bases in nucleotides 385 to 418 region are involved
in long-range interactions with bases in nucleotides
1059 to 1086 region (Figure 3(f)), a region that is
involved in mid-range interactions for the centroids
of the first and the second cluster (Figure 3(d) and
(e)). It is noted that pseudoknots may be partly
responsible for the competing local structures. Our
sampling algorithm does not permit pseudoknots;
however, competing local structures in the sample
may provide clues for pseudoknots.
Clustering results for all 100 human mRNAs

For the 100 humanmRNAs, application of the CH
index indicates that most (92 of 100) can be well
characterized by five or fewer clusters (Figure 4(a)).
Although the number of conformational states
grows exponentially with sequence length, the
number of clusters does not increase, on average,
with the length of the sequence (Figure 4(b) and (c)).
We found little evidence of a correlation between
the cluster number and the sequence length
(correlation coefficientZ0.0692, p-valueZ0.4939).
For the probability of the largest cluster, the
cumulative probability distribution for the 100



Figure 3. Two-dimensional histograms of individual clusters and circle diagrams of the cluster centroids for three
distinct clusters (arranged in descending order of cluster size), for the mRNA sequence of transcript variant Dp40 for
H. sapiens dystrophin. In the histogram for a cluster, the area of a square at position (i, j) is proportional to the frequency
of base-pair i$j in the cluster. In a circle diagram, bases are positioned along a circle in the clockwise orientation, and a
base-pair is shown by an arc that connects the two bases.
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mRNAs is shown in Figure 5. For these sequences,
the minimum for the probability of the largest
cluster is 0.377. The size of the largest cluster is
approximately uniformly distributed between 0.5
and 0.95 (Figure 5).
If we define a dominant cluster to be one with a
probability of greater than 0.7, then 43% of the
messages do not have a dominant cluster. By
considering whether the MFE structure is in the
largest cluster and whether the largest cluster is



Figure 4. Distribution of the number of clusters
for (a) the entire dataset of 100 human mRNA
sequences, for (b) 45 sequences %2500 nt in length,
and for (c) 55 sequences O2500 nt in length.

Figure 5. Cumulative distribution function for the size
of the largest cluster for the 100 mRNA sequences. For
each sequence, the size (i.e. the probability) of a cluster is
estimated by the frequency of the cluster in the sample.
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dominant, we find that these messages fall into one
of four groups. Each of these groups is exemplified
by two messages reported in Table 1. For the two
messages from group 1, the MFE structure is in a
dominant cluster. For group 2, the MFE structure is
in the largest, but not the dominant cluster. For
group 3 and group 4, the MFE structure is in a
cluster of secondary probability. Sequence 046
(accession number NM_005656) presents an
extreme case for which the MFE structure is not
similar to any structure in the sample. The
clustering results for all 100 mRNAs are available
in Supplementary Data (Table S1). For 45 of the 100
messages, the MFE structure is clustered into the
largest cluster (groups 1 and 2 in Table 2), but for
only 29 of these 45 messages does the largest cluster
dominate the ensemble (group 1 in Table 2). In
addition, for 57 of the 100 messages, the MFE
structure is contained in a cluster with a probability
under 0.5. These findings suggest that the MFE
structure does not generally represent well the
Boltzmann-weighted ensemble of structures, and
motivate our search for more representative struc-
tures.
Ensemble centroid represents Boltzmann-weighted
ensemble substantially better than does
the MFE structure

For each sequence, the ensemble centroid and
cluster centroids are computed using the sampled
1000 structures. In the light of the population
view of mRNA structures, we are interested in
assessing how well a single structure represents
the Boltzmann-weighted ensemble of secondary
structures. For this purpose, we consider the
average base-pair distance between a predicted
structure and the sampled ensemble. As indicated
in Figure 6, the ensemble centroid is at least 30%
closer to the sampled ensemble than is the MFE
structure for 66 messages, with an average distance
improvement of 36.9% for all the 100 messages.
To obtain summary statistics for a group of
sequences, we first normalize the average distance
by sequence length (see the legend to Table 2), and
then average the normalized distances for the
group. As indicated in Table 2, the ensemble
centroid is about 27% closer to the sampled
ensemble than is the MFE structure, when the
MFE is present in the largest cluster (groups 1 and
2), and it is 40% to 50% closer when the MFE is
absent in the largest cluster (groups 3 and 4).



Table 1. Clustering results for human mRNAs

Groupa Sequence IDb
GenBank

accession no.
Sequence length

(nt)
Number of
clusters

Cluster probabilities
(*cluster of MFE structure)

1 007 NM_004381 2622 4 0.813* 0.125 0.049 0.013
1 011 NM_002231 1623 2 0.980* 0.020
2 078 NM_016815 1019 2 0.642* 0.358
2 054 NM_130474 5640 2 0.590* 0.410
3 004 NM_021785 2338 3 0.919 0.062 0.019*
3 081 NM_004019 1634 3 0.754 0.161* 0.085
4 046 NM_005656 3226 3 0.518 0.482 0.000*
4 059 NM_033172 2711 3 0.592 0.277* 0.131

a Group 1, MFE structure is present in the largest cluster with a cluster probability O0.70. Group 2, MFE structure is present in
the largest cluster with a cluster probability %0.70. Group 3, MFE structure is absent from the largest cluster with a cluster probability
O0.70. Group 4, MFE structure is absent from the largest cluster with a cluster probability %0.70.

b Sequence ID is the identification number of the sequence in the sample of 100 mRNA sequences in this study.
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Improved representation of ensemble and clusters
by cluster centroids

Analogous to the ensemble centroid as a single
representative of the Boltzmann-weighted ensem-
ble, the centroid of a cluster is a representative of the
cluster. To compare the degrees of representation of
a cluster by its centroid, the ensemble centroid, and
the MFE structure, we compute normalized dis-
tances to the cluster. We also compute the
normalized distance from all cluster centroids to
the sample (see footnote b of Table 2), for an
ensemble-level comparison with the ensemble
centroid and the MFE structure.

For the mRNA of H. sapiens g-glutamyltrans-
ferase-like activity 1 (GenBank accession no.
NM_004121, sequence ID 041 in Supplementary
Data, Table S1), there are two major clusters. Cluster
1 has a probability of 0.554, and cluster 2 has a
probability of 0.446. The MFE structure is in the
smaller cluster. The distributions of the normalized
distances to the structure sample for both the MFE
structure and the ensemble centroid are bimodal
(Figure 7(a)). In such cases, not surprisingly, neither
Table 2. Improvement (in distance to the structure sample) by
cluster centroids over the ensemble centroid

Group

Number
of

sequences

Average
normalized

distance from the
MFE structure to

the samplea

Average normalized
distance from the
ensemble centroid
to the samplea

Av

c

1 29 25.07G7.60 17.61G4.05
2 16 24.90G5.98 17.84G2.86
3 28 33.84G6.73 16.28G2.43
4 27 31.77G6.46 18.84G3.63
Total 100 29.30G7.81 17.61G3.44

a Normalized distance from the representative structure to the s
structure and the sample of 1000 structures)/(length of sequence)!
normalized distances of all sequences in the group.

b Normalized distance from cluster centroids to the sampleZ (aver
cluster centroid for each of the 1000 structures in the sample)/(le
calculated for the normalized distances of all sequences in the group

c Improvement by ensemble centroid over MFE structureZ[1K(n
(normalized distance from the MFE structure to the sample)]!
the improvement values of all sequences in the group.

d Improvement by cluster centroids over ensemble centroidZ[1K
(normalized distance from the ensemble centroid to the sample)]!
improvement values of all sequences in the group.
the ensemble centroid nor the MFE structure
represents the populations of structures well.
However, centroids specific to the clusters represent
the individual clusters and the ensemble substan-
tially better than does any other single structure
(Figure 7(b) and (c); and the last column in Table 2).
These results indicate that when there is no single

dominant cluster, distance distributions tend to be
multimodal. In such cases, no single structure is
likely to be a good representative of the entire
ensemble, and cluster-specific centroids are more
appropriate representatives for individual clusters
as well as for the Boltzmann ensemble.
Statistical reproducibility of clustering results

We have previously shown that ensemble-level
sampling statistics are statistically reproducible.34

Here, we examine reproducibility at the cluster
level. For the mRNA sequence of transcript variant
Dp40 for H. sapiens dystrophin, we generated two
new independent samples, each with a sample size
of 1000 structures. The two samples do not have a
the ensemble centroid over the MFE structure, and by the

erage normalized
distance from
luster centroids
to the sampleb

Average improve-
ment by the ensem-
ble centroid over
the MFE structure

(%)c

Average improve-
ment by cluster

centroids over the
ensemble centroid

(%)d

15.95G3.40 27.30G11.68 8.87G6.01
14.74G2.38 26.67G9.96 17.05G7.25
15.10G2.17 50.44G10.03 7.08G5.18
15.51G2.95 39.21G11.65 17.30G7.34
15.40G2.81 36.89G14.63 11.95G7.82

ampleZ(average base-pair distance between the representative
100. The mean and standard deviation are calculated for the

age base-pair distance between a sampled structure and its closest
ngth of sequence)!100. The mean and standard deviation are
.
ormalized distance from the ensemble centroid to the sample)/
100%. The mean and standard deviation are calculated for

(normalized distance from the cluster centroids to the sample)/
100%. The mean and standard deviation are calculated for the



Figure 7. Overlaid distributions (smoothed histograms)
of (a) the normalized distances to the entire structure
sample for the mRNA of H. sapiens g-glutamyltransferase-
like activity 1 (Genbank accession no. NM_004121, 2414 nt,
and ID 041), for the MFE structure and the ensemble
centroid; (b) the normalized distances to the larger cluster
for the MFE structure, the ensemble centroid and the
centroid of this cluster; and (c) the normalized distances to
the smaller cluster for the MFE structure, the ensemble
centroid, and the centroid of this cluster.

Figure 6. Distribution of the percentage improvement
in average base-pair distance between the ensemble
centroid and the sample over the average distance
between the MFE structure and the sample.
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single structure in common. The statistical repro-
ducibility at the ensemble level is again illustrated
by both the two-dimensional histograms for base-
pair frequencies (Figure 8(a) and (b)) and the
ensemble centroids (Figure 8(c) and (d)) for these
two samples.

Each of these two non-overlapping samples
contains three clusters. The reproducibility of
these clusters can be appreciated from both the
cluster-level two-dimensional histograms
(Figure 9(a)–(f)), and the centroids of the clusters
(Figure 10(a)–(f)). Furthermore, the cluster-level
reproducibility is observed on a combined multi-
dimensional scaling (MDS) plot for the two samples
(Figure 11). These show that a cluster of significant
size is represented by structures that can be
completely different from one sample to another,
and yet cluster-level characteristics and statistics
are reproducible. We note that, because MDS is a
method for displaying high-dimensional objects
through reduction of dimensionality, objects that do
not overlap in the original dimensionmay appear to
overlap in the two-dimensional display.

To further assess the generality of cluster-level
reproducibility, we selected nine other sequences of
various lengths from the set of 100 human mRNAs,
for a total of ten sequences. For each of the nine
sequences, a second independent sample was
generated and the clustering procedure was
performed on this sample (see Supplementary
Data, Table S2 for the list and the clustering results
of the ten sequences). For six of the ten sequences,
the clustering results from the first sample were
confirmed by the second sample, in terms of the
number of clusters, the two-dimensional histo-
grams and the cluster centroids. For three of the
remaining four sequences, the second sample
differs from the first sample by only one or two
small clusters of probability !0.04. In other words,
for these three sequences, the clustering results are
reproducible for all major clusters. A large differ-
ence in the number of clusters between two samples
was observed for only one sequence (H. sapiens
adducin 2 (b) transcript variant b-3a mRNA, 3014 nt
in length). For this sequence, the first sample
contains 11 clusters while the second sample has
only two clusters. By a careful examination of the
clustering output, we found that the combination of
six of the 11 clusters in the first sample corresponds
to cluster 1 in the second sample (Figure 12(a) and
(b)), and the combination of the other five clusters in



Figure 8. Two-dimensional histograms of (a) sample 1 and (b) sample 2, and circle diagrams of the ensemble centroids
for (c) sample 1 and (d) sample 2, for the mRNA sequence of transcript variant Dp40 forH. sapiens dystrophin (GenBank
accession no. NM_004019, 1634 nt, and ID 081). The two structure samples were generated independently with a sample
size of 1000 structures. The two samples do not have a single structure in common.
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the first sample corresponds to cluster 2 in the
second sample (Figure 12(c) and (d)). This shows
that the clustering output is not completely
insensitive to sampling variations. When the CH
index curve has multiple peaks with comparable
heights, different numbers of clusters may be
indicated by the CH index for different samples,
simply as a result of sampling variations. However,
even in such rare cases, reproducibility may still be
observed with a proper combination of small
clusters.
Comparison between mRNAs and structural
RNAs

Because mRNAs and structural RNAs are func-
tionally different classes of molecules, differences in
folding features may be expected. Here, we inves-
tigate this problem by taking advantage of the
capability to cluster RNA secondary structures. We
compare the clustering results for the group of 100
human mRNAs and the clustering results for the
group of 81 structural RNAs of diverse types that
were used in our previous analysis on the perform-
ance of centroid structures.35 For tRNAs, RNase P
RNAs, transfer messenger RNAs, signal recognition
particle (SRP) RNAs, small subunit (16 S or 16 S-like)
rRNAs, large subunit (23 S or 23 S-like) rRNAs, and
5 S rRNAs, ten sequences were randomly selected
for each RNA type. The group also includes nine
group I introns without undetermined nucleotides
and two group II introns that are available from
online databases (for complete information on these
sequences, see Ding et al.35).
Similar numbers of clusters

We first examine the numbers of clusters and the
sizes of clusters for the two groups of RNAs. The
average number of clusters for the mRNAs is 2.93,



Figure 9. Cluster-level two-dimensional histograms of (a) the largest cluster from sample 1 and (b) the largest cluster
from sample 2, (c) the second largest cluster from sample 1 and (d) the second largest cluster from sample 2, and (e) the
smallest cluster from sample 1 and (f) the smallest cluster from sample 2, for the mRNA sequence of transcript variant
Dp40 for H. sapiens dystrophin. The cluster sizes (i.e. estimated probabilities by sample frequencies) are (0.724, 0.169,
0.107) for sample 1, and (0.732, 0.168, 0.100) for sample 2.
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Figure 10. Circle diagrams of the cluster centroids for (a) the largest cluster from sample 1 and (b) the largest cluster
from sample 2, (c) the second largest cluster from sample 1 and (d) the second largest cluster from sample 2, and (e) the
smallest cluster from sample 1 and (f) the smallest cluster from (f) sample 2, for the mRNA sequence of transcript variant
Dp40 for H. sapiens dystrophin.
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Figure 11. Two-dimensional representation of multi-dimensional scaling of the combined set of 2000 structures from
sample 1 and sample 2 for the mRNA sequence of transcript variant Dp40 for H. sapiens dystrophin. Structures from
sample 1 are plotted as circles whereas structures from sample 2 are plotted as triangles. The light blue, pink, and yellow
colors represent structures from the largest cluster (cluster 1), the second largest cluster (cluster 2), and the smallest
cluster (cluster 3), respectively.
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whereas the average for the structural RNAs is 3.23.
The histograms for the numbers of clusters show
very similar distributional patterns for the two
groups, as shown in Figure 4(a) for the mRNAs and
Figure 13 for the structural RNAs. For the t-test
used for testing the difference between the averages
of cluster numbers of the two groups, the p-value is
0.2421, indicating no significant difference.

The average cluster size (probability) for all 293
clusters for the group of mRNAs is 0.3413, while the
average cluster size for all 262 clusters for the
structural RNA group is 0.3092. For the largest
cluster for each sequence, the average size is 0.7338
for the mRNAs and 0.7143 for the structural RNAs.
Results from the t-tests did not show a significant
difference between the groups of mRNAs and
structural RNAs (p-values are 0.2283 for all clusters,
and 0.4160 for the largest cluster).
Substantial performance improvement by ensemble
centroid over the MFE structure

For each of the structural RNAs, we have
previously reported performance of the ensemble
centroid using the structure determined by com-
parative sequence analysis as the standard.35

However, such a standard is generally not available
for an mRNA. To make a comparison based on a
measure that is applicable to both RNA groups, we
consider the average base-pair distance between a
predicted structure and the sampled ensemble.
Here, a predicted structure is either the MFE
structure or the ensemble centroid. Performance is
measured by which structure, the MFE structure or
the ensemble centroid, best represents the ensem-
ble. For the structural RNAs, the distribution of the
percentage improvement in average base-pair
distance between the ensemble centroid and the
sample over the average distance between the MFE
structure and the sample is shown in Figure 14. The
distribution for the mRNAs is shown in Figure 6.
The average percentage improvement of the
ensemble centroid over the MFE structure is
36.89% for the mRNAs, and 22.52% for the
structural RNAs. Thus, for both RNA groups, the
ensemble centroid is substantially better than
the MFE structure as a single representation of the
Boltzmann-weighted ensemble. Furthermore, the
degree of average improvement for the mRNAs is
significantly higher than that for the structural
RNAs (p-value of the t-test is 6.42!10K10).
Both Boltzmann ensembles and clusters
of structural RNAs contain more base-pairs
with high frequencies

Because structural RNAs are expected to have
more stable structures than do mRNAs, we
compared the numbers of predicted base-pairs for
the two groups, at both the ensemble level and the
cluster level. Here, those base-pairs with a fre-
quency O0.5 are considered to be high-frequency
base-pairs. Because the ensemble centroid or a
cluster centroid is formed by all base-pairs with



Figure 12.Cluster-level two-dimensional histograms for (a) the combined set of structures from clusters 1, 2, 3, 4, 5 and
8 from sample 1, for (b) structures in cluster 1 from sample 2, for (c) the combined set of structures from clusters 6, 7, 9, 10
and 11 from sample 1, and for (d) structures in cluster 2 from sample 2, for the mRNA of H. sapiens adducin 2 (b)
transcript variant b-3a (Genbank accession no. NM_017483, 3014 nt, and ID 097). The cluster sizes are (0.535, 0.184, 0.117,
0.044, 0.042, 0.042, 0.013, 0.011, 0.006, 0.004, 0.002) for sample 1, and (0.935, 0.065) for sample 2. The sizes of the two
combined sets for sample 1 are (0.933, 0.067).

Figure 13.Distribution of the number of clusters for the
set of 81 structural RNAs.
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frequency O0.5 in the sampled ensemble or the
cluster, the numbers of base-pairs in the ensemble
centroid and the cluster centroids can be used in the
comparison of the numbers of high-frequency base-
pairs. To account for differences in sequence length,
the sequence length was used to normalize these
base-pair numbers, as the number of base-pairs in a
structure appears to grow approximately linearly
with the sequence length. At the ensemble level, the
group of structural RNAs was found to have, on
average, 16.3% more high-frequency base-pairs per
nucleotide than the group of mRNAs. The differ-
ence was statistically significant (p-value of the
t-test is 5.59!10K7). For cluster-level comparison,
we first summed the numbers of base-pairs in all
cluster centroids for a sequence. This number was
divided by the total number of clusters to obtain an
average number of high-frequency base-pairs
per cluster centroid for the sequence, and was
normalized by the sequence length. The average of



Figure 14. Distribution of the percentage improvement
in average base-pair distance between the ensemble
centroid and the sample over the average distance
between the MFE structure and the sample for the set of
81 structural RNAs.
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these normalized numbers for all sequences in a
group is then computed. On average, the group of
structural RNAs was found to have 14.9% more
high-frequency base-pairs per nucleotide in cluster
centroids than the group of mRNAs, with a highly
significant p-value of 6.42!10K10. Furthermore, we
folded the 5 0 UTR, the 3 0 UTR and the coding
sequence (CDS) of each mRNA separately, and
performed calculations as described above at both
the ensemble level and the cluster level for each of
the three regions. The numbers are plotted in
Figure 15, which shows that the observation of a
significantly higher number of high-frequency
base-pairs for the structural RNAs also holds for
each of the three mRNA regions, with p-values of
Figure 15. Bar plots of the (length-adjusted) average
number of high-frequency (frequencyO0.5) base-pairs at
the ensemble level (the left group of bars) and the cluster
level (the right group of bars), for the set of 81 structural
RNAs, the set of 100 full-length humanmRNAs, the set of
the 5 0 UTRs of the human mRNAs, the set of the 3 0 UTRs
of the human mRNAs, and the set of the coding
sequences of the human mRNAs. Each full-length
mRNA and the three regions are folded separately, and
each of the resulting structure samples is clustered
individually. The standard error bar and the average
value are shown for each bar in the plot.
2.29!10K5(5 0 UTR), 8.62!10K9 (3 0 UTR) and 1.46!
10K6 (CDS) for the ensemble-level comparisons,
and p-values of 2.92!10K4 (5 0 UTR), 3.68!10K13 (3 0

UTR) and 2.72!10–8 (CDS) for the cluster-level
comparisons.

An alternative method for addressing the effect of
sequence length and for detecting the difference
between the two RNA groups is a linear regression
analysis on the combined set of sequences. Here,
FBP, the number of frequent base-pairs, is the
dependent variable. The two independent variables
(predictors) are seqlen, the sequence length, and ind,
an indicator variable. For an mRNA sequence,
indZ0; for a structural RNA, indZ1. The linear
regression model is FBPZf0C( f1!seqlen)C
( f2!ind), where f0, f1, and f2 are regression
coefficients. For the ensemble-level comparison,
both the sequence length and the indicator variable
have significant p-values of 6.0!10K125 and 0.0019,
respectively. The R2 value of the regression is 0.9708.
For a separate regression analysis for the cluster-
level comparison, the p-values are also significant
(2.0!10K136 for seqlen and 0.0059 for ind), and the R2

value is 0.9787. We also performed regressions with
seqlen2 as an additional predictor. The p-value for
seqlen2 is 0.9945 for the ensemble-level analysis, and
0.4833 for the cluster-level analysis, indicating that
normalization by sequence length is appropriate in
this context.
Comparable energy gap between the MFE structure
and the sampled ensemble

For structural RNAs, the energy gap between the
ground state (MFE) and the rest of the Boltzmann
ensemble may be greater than that of mRNAs. To
examine this, we computed the energy difference
between the MFE structure and the average free
energy of all sampled structures. This difference
was normalized by the sequence length, which has
been used as the normalization factor for free
energies of RNA structures.37 The average
normalized energy difference for the structural
RNAs is 0.0259 kcal/mol whereas the average for
the mRNAs is 0.0272 kcal/mol. No statistically
significant difference was found for the two groups
of RNAs (p-value of 0.1501).
Clusters are more compact for structural RNAs

Here, we examine the separation between
clusters, and the compactness of clusters. These
can be measured by the between-cluster sum of
squares (BSS) and the within-cluster sum of squares
(WSS), introduced for the calculation of the CH
index. To adjust for the effect of sequence length, we
normalize these sums of squares by the sequence
length. The normalization here is based on the
following observations: these sums of squares are
computed by the base-pair distance between two
structures (see Methods); the number of base-pairs
in a structure grows roughly linearly with the
sequence length. The average normalized BSS is



Figure 16. Scatter plot of the
within-cluster sum of squares
(WSS) versus sequence length for
the combined set of 81 structural
RNAs and 100 human mRNAs.
Structural RNAs are represented
as blue triangles, while mRNAs
are represented as red circles. The
regression lines determined by
parameters from the linear
regression model are drawn sep-
arately for the structural RNAs
(blue dotted line) and the mRNAs
(red continuous line). The slope for
each of the two parallel regression
lines is 153.55, whereas the vertical
difference in WSS between the two
lines for any fixed sequence length
is 32,340.11. Since none of the
structural RNAs is O4000 nt, we
also performed a separate
regression analysis on 81 struc-

tural RNA and 78 mRNA sequences that have lengths % 4000 nt. This analysis returned highly similar findings (thus
the results are not shown here).

† http://sfold.wadsworth.org and
http://www.bioinfo.rpi.edu/applications/sfold
‡ http://sfold.wadsworth.org/demo
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51.88 for the structural RNAs, and 49.34 for the
mRNAs. The average normalized WSS is 100.40 for
the structural RNAs, and 153.99 for the mRNAs. For
the sample size of 1000 structures, 51.88/1000Z
0.052 (49.34/1000Z0.049) is the average distance
per base between a cluster centroid and the
ensemble centroid for structural RNAs (mRNAs);
and 100.40/1000Z0.100 (153.99/1000Z0.154) is the
average distance per base between a structure and
the centroid of its cluster for structural RNAs
(mRNAs). Results from the t-tests showed no
significant evidence for the difference in the
normalized BSS (p-value of 0.6592), but the
normalized WSS for structural RNAs is signifi-
cantly lower than that of the mRNAs (p-value of
2.67!10K15). The latter finding suggests that
clusters in the Boltzmann ensembles for structural
RNAs are more compact than those for mRNAs.

To further assess the appropriateness of normali-
zation by sequence length and the difference in the
compactness of the clusters between the two RNA
groups, we performed a linear regression analysis
using combined data for both RNA groups. In this
analysis, WSS is the dependent variable to be
predicted. The sequence length, seqlen, is the first
independent variable (predictor). An indicator
variable ind is the second predictor. For an mRNA,
indZ0; for a structural RNA, indZ1. The linear
regression model is WSSZw0C(w1!seqlen)C(w2!
ind), where w0, w1, and w2 are regression coefficients.
From the regression analysis,w1Z153.55, andw2ZK
32340.11 (w0Z8457.70). Both the sequence length and
the indicator variable have significant p-values of
2.58!10K108 and 3.39!10K3, respectively. The R2

value of the regression is 0.9605, indicting that this
linearmodel explainsover 96%of thevariations in the
data. The scatter plot of the WSS versus sequence
length is shown in Figure 16,with the regression lines
drawn for both RNA groups. The regression results
confirm that normalization by sequence length is
appropriate, and that clusters for structural RNAs are
significantly more compact than those for mRNAs.

Computational costs and software availability

The main memory requirement for the clustering
procedure is the storage of the distance matrix. The
computation of the centroid is a linear operation.
The CPU times and memory requirements for our
version of the partition function calculation, for
sampling of 1000 structures, and for clustering and
centroid calculation are given in Supplementary
Data, Table S3 for several sequences of various
lengths. Clustering features, including centroids,
are available through the module Srna of the Sfold
software for folding and design of nucleic acids.
Sfold is available through Web servers†. Sample
output for a folded sequence is also available‡.
Discussion

For over two decades, algorithms for computing
the MFE structure have dominated computational
approaches to prediction of RNA secondary struc-
ture. Application of this paradigm implicitly
assumes that an RNA has a single, stable structure.
On the other hand, it is unlikely that mRNAs exist in
the unfolded state. Between these two extremes is an
ensemble of an enormous number of possible
structures. Here, we have explored this vast
intermediate structural space through an automated
procedure for identifying and representing struc-
tural clusters in the Boltzmann-weighted ensemble.

http://sfold.wadsworth.org
http://www.bioinfo.rpi.edu/applications/sfold
http://sfold.wadsworth.org/demo
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The applicationwas illustrated for a random sample
of full-length human mRNAs. Our results indicate
that the MFE structure often is not a good
representative of the ensemble. The MFE structure
is in a dominant cluster for only 29% of the
sequences. We found that that the centroid structure
is substantially closer to the members of the
ensemble, particularly when the MFE structure is
not in the largest cluster. In such cases, the centroid
structures provide a substantially improved sum-
mary of this structure space. When there is no
dominant structure, the ensemble of structures often
shows a multimodal distribution. In these cases, no
single structure provides an adequate summary of
the Boltzmann-weighted space of structures,
whereas centroids of a small number of clusters do.

Determination of the optimal number of clusters
in clustering analysis is a difficult problem. Thus,
although we have used a well-rated procedure for
this purpose, the predicted number of clusters may
not always be accurate. Nevertheless, the obser-
vation of competing helices and the findings of two
or more modes in the distributions of distances
indicate that multiple clusters of secondary struc-
tures do occur frequently. Furthermore, the result
that multiple cluster centroids frequently represent
the space of secondary structures substantially
better than does the ensemble centroid further
indicates the value of the cluster-specific centroids,
even if there remains some uncertainty in the exact
number of clusters. All of our results are dependent
on the energy rules and parameters compiled
for RNA secondary structures over the years. In
fact, since the structure sampling algorithm gene-
rates a representative sample of structures from
the Boltzmann ensemble, the implications of the
findings presented are more a reflection of the
energy rules and parameters than they are of
the sampling algorithm.

Envisioning structure space from the perspective
of a population of states in the Boltzmann-weighted
ensemble represents a departure that is more
difficult to characterize than is a single “best”
structure. However, our finding that human
mRNA structures populate a small number of
clusters makes it possible to characterize the major
features of this space with a small number of
centroid structures that capture the central ten-
dencies of these clusters. These centroids thus
provide an efficient framework for representing
the realities embodied in these mRNAs, according
to the established secondary structure energy rules
and parameters.

The observation of statistical reproducibility at
the cluster-level is expected, because the structure
sampling algorithm guarantees a statistical rep-
resentation of the Boltzmann ensemble such that a
major cluster is always represented in a sample of
sufficient size. For two non-overlapping samples,
there is no single common structure in the two
representations of the cluster, yet the cluster
characteristics and statistics are comparable for
the two non-overlapping representations. In the
comparison between mRNAs and structural RNAs,
we observed similarity for the distribution and the
average number of clusters, the energy gap between
the MFE structure and the sampled ensemble, and
the between-cluster sum of squares. Some of these
similarities may be due to the incompleteness of the
free energy model; others may be attributable to
possibly conserved secondary structure elements in
the coding regions of eukaryotic mRNAs38 and
structures in the UTRs. Significant differences were
observed for the number of high-frequency base-
pairs in the sampled ensemble and the clusters, and
the compactness of the clusters. These differences
are not surprising, as structures for structural RNAs
are expected to be more stable than those of
mRNAs. Clustering may also be useful for examin-
ing the differences between biological RNA
sequences and random sequences.39–43
Methods

Base-pair distance

For an RNA sequence of n nucleotides, a secondary
structure I can be expressed by an upper triangular matrix
of base-pairing indicators {Iij}, 1%i!j%n. IijZ1 if the ith
base is paired with the jth base, or IijZ0 otherwise. The
requirement of at least three unpaired intervening bases
between any base-pair implies IijZ0 for jZiC1, iC2 and
iC3, 1%i, iC3%n. The indicators are not independent of
each other, because they are subject to constraints. The
assumption of no pseudoknots implies IijIi 0j 0Z0 for i 0!i!
j 0!j. Also, when base-triples are prohibited,P

1%i%n Iij%1, and
P

1%j%n Iij%1. While the base-pair
indicators are binary and under constraints, they are
also coordinates in a Euclidean space of dimension
(nK1)n/2. For two structures I1Z fI1ijg and I2Z fI2ijg, we
consider the following metric D1 and the squared
Euclidean distance D2 :D1ðI1; I2ÞZ

P
1%i!j%n jI

1
ijKI2ijj and

D2ðI1; I2ÞZ
P

1%i!j%n ðI
1
ijKI2ijÞ

2. Both metrics are equal to
the number of different base-pairs in I1 and I2. In other
words, both of the metrics are the well-known base-pair
distanceD(I1, I2). This interpretation does not apply to the
square-root of D2, i.e. the Euclidean distance. The
discriminatory power of this distance is adequate in our
context, because we are interested in comparing struc-
tures sampled for the same RNA sequence. In other
circumstances, e.g. when structures of homologous
sequences are under comparison, alternative metrics44

may be more appriopriate to account for insertions and
deletions. The base-pair distance also facilitates the
identification of centroid structures.35

Sample and MFE structure

For an RNA sequence of even several hundred
nucleotides, the MFE structure is highly unlikely to be
observed in a statistical sample, because the Boltzmann
probability of the MFE structure is very small for a
sequence of moderate length. For example, for three
human mRNAs of 632 nt, 1187 nt, and 2158 nt (ribosomal
protein L3 (RPL3), GenBank accession no. NM_000976;
N-acetylglucosamine kinase (NAGK), GenBank accession
no. NM_017567.1; apolipoprotein L 1 (APOL1), transcript
variant 3, GenBank accession no. NM_145344), the
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Boltzmann probabilities of the MFE structures are
3.9336!10K10, 3.5507!10K18, and 5.1345!10K36,
respectively. Accordingly, for long RNA sequences,
there is little or no overlap between two independent
samples of moderate size; nevertheless, Boltzmann-
weighted sampling statistics are reproducible.34 Further-
more, regardless of sequence length, a cluster with an
appreciable probability of occurrence is expected to be
represented in a sample of 1000 structures. Larger
samples would reveal additional clusters that are
insignificant at a significance level of 0.001. Thus, for an
RNA sequence, we first cluster 1000 structures sampled
from the Boltzmann ensemble, and then determine the
cluster for the MFE structure.

Clustering procedure

We first construct a 1000!1000 matrix of the pair-wise
distances for the 1000 sampled structures. This distance
matrix is used as the input for clustering. Hierarchical
clustering is selected for our application, for its simplicity
and its speed of computation.45 Hierarchical clustering
methods can be further divided into two subclasses: the
agglomerative approach, and the divisive methods such
as Diana.45 It has been suggested that the top-down
divisive method is likely to produce more sensible output
if the focus is on identifying a few clusters.46 Furthermore,
among several other common clustering procedures, the
Diana method has been found to be the most effective in
achieving good separation in other settings.47 Accord-
ingly, in this study, we employed the Diana method as
implemented in the R statistical package†.

Determination of number of clusters

The Diana method generates a tree structure depicting
the separations of structures at every individual step.
However, it does not address the problem of the optimal
number of clusters. In an evaluation of 30 procedures for
determining the optimal number of clusters, the Calinski
& Harabasz index (CH index)48 was the best performer.49

The CH index is defined as CH(k)Z[B(k)/(kK1)]/[W(k)/
(ntotalKk)], where k is the number of clusters, ntotal is the
total number of objects to be clustered (here ntotalZ1000),
B(k) is the between-cluster sum of squares, andW(k) is the
within-cluster sum of squares. Thus, the CH index is
analogous to the F-statistic in univariate analysis of
variance.48 The goal is to maximize CH(k) over the
number of clusters kR2 (CH(k) is undefined for kZ1).
As described above, a secondary structure as

expressed by an upper triangular matrix is an object
in a high-dimensional Euclidean space. For the calcu-
lation of the sum of squares, we can use either the
average of the corresponding Euclidean coordinates for
all structures in a cluster, or the centroid of the cluster.48

We have recently introduced the notion of centroid
for a set of structures.35 For the centroid-based
calculation, BðkÞZ

P
1%i%k niDðEC;CCiÞ, and WðkÞZP

1%i%k

P
1%j%ni DðCCi; IijÞ, where ni is the number of

structures in cluster i, D(EC, CCi) is the base-pair
distance between the ensemble centroid (EC) and the
centroid of cluster i (CCi), and D(CCi, Iij) is the base-pair
distance between the centroid of cluster i and the jth
structure in this cluster. The distance calculation using
averages of Euclidean coordinates is a quadratic
operation, whereas the distance calculation using the
† http://www.r-project.org/
centroid is a linear operation. We did not observe
appreciable differences in the clustering results by the
two methods. Therefore, we use centroids in the
implementation of the CH index.
For all human mRNAs analyzed in this study, we

calculate the CH index for k ranging from 2 to 20, because
there is usually a gradual decrease in the index for k larger
than 10, such that the upper bound of 20 is sufficient for
finding the maxima on the CH index profile. The cluster
number with the highest CH index value is the optimal
number of clusters. This number is then used to
determine the structural clusters, through identification
of the corresponding divisive level for the clustering tree
produced by Diana.
After clustering the sampled structures, we compute

the MFE structure with mfold 3.136 for the same set of
Turner thermodynamic parameters50,51 that are currently
implemented by our sampling algorithm.34 To identify
the cluster to which the MFE structure belongs, we first
identify the cluster whose centroid has the shortest base-
pair distance to the MFE structure. If this distance is less
than or equal to the longest base-pair distance between
a structure in the cluster and the cluster centroid, the MFE
structure belongs to this cluster; otherwise, the MFE
structure does not belong to any cluster in the sample, i.e.
it is in a new cluster by itself.
Visual representation of clusters

Multidimensional scaling (MDS) is a method for a
visual representation of the patterns of proximities (i.e.
similarities or distances) among a set of objects.52 It can be
useful for displaying clusters of high-dimensional data in
two-dimensional space, when the clusters are well-
separated. The input for MDS is a distance matrix. For
RNA, the same distance matrix for clustering is used for
MDS. MDS is available in the R package. In addition, a
cluster can be individually represented by a two-
dimensional histogram34 for displaying the frequencies
of base-pairs in the cluster.
Centroid structures as ensemble and cluster
representatives

Recently, we introduced the notion of centroid struc-
ture as a representative of the central tendency for any
given set of structures.35 For a set of structures, the
centroid is defined as the structure in the entire structure
ensemble that has the shortest total base-pair distance to
all structures in the set. The centroid is referred to as the
ensemble centroid when the structure set is the sampled
ensemble, and it is a cluster centroid when the structure
set is a cluster in the sample. We have described a
procedure for centroid identification and have shown that
these centroid structures are useful for improved
prediction of RNA secondary structure.35 Here, we
focus on the utility of these centroids as the representa-
tives of the Boltzmann ensemble of secondary structures.
Selection of human mRNA sequences

To select representative mRNA sequences with reliable
annotation, we consider the Reference Sequence (RefSeq)
database from the National Center for Biotechnology
Information (NCBI)‡. The non-redundant collection of
‡ http://www.ncbi.nlm.nih.gov/RefSeq

http://www.r-project.org/
http://www.ncbi.nlm.nih.gov/RefSeq
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human mRNA sequences was used as the basis for
selection. Filters were used to identify records that have
been reviewed by NCBI staff and collaborators, and to
extract those sequences that are marked as complete on
both the 5 0 and the 3 0 ends, i.e. full-length mRNA
sequences including the 5 0 UTR, the coding region and
the 3 0 UTR. As of 22 March 2004, only 1290 sequences
satisfied the filtering criteria. Among these, 1249
sequences have length less than or equal to 9000 nt, a
length that can be efficiently managed by our computer
system for a large number of CPU-intensive andmemory-
intensive RNA folding jobs. From the 1249 mRNA
sequences, 100 were drawn randomly. They range from
425 nt to 8458 nt in length, with an average of 2927 nt.
These sampled mRNA sequences were given sequence
identification numbers from 001 to 100 according to the
order that they were drawn. A list of these 100 sequences
can be found in the Supplementary Data (Table S1).
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